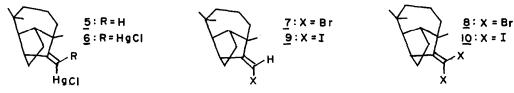

UNIQUE MERCURATION-HALOGENATION OF ISOPRENOID ECTOCYCLIC OLEFINS:NOVEL ωω-DIHALIDES FROM LONGIFOLENE AND CAMPHENE VIA ωω-DIMERCURICHLORIDES¹ Shivaji N. Suryawanshi and U. Ramdas Nayak^{*} National Chemical Laboratory, Poona (India)

In the field of isopremoids, the monoterpene pair camphene $\underline{1}$ / tricyclene 2 and the closely related sesquiterpene pair longifolene 3 / longicyclene 4 display a typical brace of structural features:

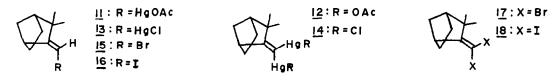

ectocyclic methylene/methylcyclopropane. The action of the soft acids $Pb(IV)^{2a}$ and $Hg(II)^{2b}$ on the cyclopropanic pair 2 / 4 has been studied by us recently and has generated interesting chemistry. A solvent-dictated novel product formation in the Pb(IV) oxidation³ of the ectocyclic olefin pair 1 / 3 has also been observed. In this communication we describe the formation of exotic $\omega\omega$ -dimercurichlorides from the $Hg(OAc)_2/NaCl$ reaction on longifolene and camphene and their utility in the generation of the corresponding novel $\omega\omega$ -dihalides.

The structural and stereochemical outcome of the addition of $Hg(OAc)_2$ to olefins is consistent with the formation of an intermediate acetoxymercurium cation whose fate is dependent on the steric disposition of the double bond. In the case of a normal olefin, nucleophilic attack by acetate ion leading to 1-acetoxy-2-mercuriacetate derivative is the common pathway but in the case of hindered olefins, the acetoxymercurium ion loses a proton more rapidly than is attacked by a nucleophile, thus generating a vinyl mercuriacetate⁴. In an attempt to rationalize the failure to achieve any hydration of longifolene 3 by the oxymercuration-demercuration sequence via the conventional in situ Hg(OAc)₂/aq.THF-NaBH₄ reaction⁵, we invoked the formation of a vinylic mercurial of the type 5.

Treatment with aqueous NaCl of the gummy product from reaction of longifolene with $Hg(OAc)_2$ in AcOH (room temp./7 days) gave two pure

4425

crystalline compounds isolated by a combination of crystallization (CH_2Cl_2) followed by chromatography (silica gel): the more soluble minor compound $(m.p. 136^\circ)$ was easily characterized as the expected ω -mercurichloride 5 (14%); more interesting and quite unusual, however, was the less soluble, major compound $(m.p. 181^\circ; 30\%)$ - the $\omega\omega$ -dimercurichloride 5.



The PMR spectrum (CCl₄) of compound 5 was characterized by a 1H vinylic singlet at 5.40 ppm and three tertiary methyl singlets at 0.97, 0.97 and 1.02 ppm. Unlike in the case of other ω -substituted derivatives of longifolene, the allylic methine multiplet appeared at 2.60 ppm without suffering any downfield shift when compared to the parent longifolene case. The E-configuration for the double bond as shown in 5 has been derived from chemical evidence: generation of the known (E)- ω -bromolongifolene 7 (m.p. 40°; 90%), on bromination of 5 in pyridine - a reaction known to proceed with retention of configuration⁶.

Spectral data of the major compound (m.p. 181°) indicated a tetrasubstituted double bond [PMR(CDCl₃): transparent olefinic region and allylic methine multiplet at 2.60 ppm; three tertiary methyl singlets at 0.97, 0.97, 1.20 ppm. IR (Nujol): 1605 cm^{-1}]. A unique ∞ -dimercurichloride structure 6, though unprecedented in the olefin-Hg(OAc)₂ reaction, was visualized as a mechanistically feasible working structure for the compound. Here again, bromination of the vinylic mercurial not only provided the crucial structural proof but also generated the novel ∞ -dibromolongifolene § (92%; $C_{15}H_{22}Br_{2}$; M⁺ 360, 362, 364). Validity of the assigned structure § for the dibromoderivative (m.p. 59°) was elegantly established when reductive elimination⁷ of bromine (Na/<u>t</u>-BuOH/THF) furnished pure longifolene. Absence of any resonance above 3.13 ppm (no secondary bromide function) was an important supporting feature in the PMR spectrum of § (tertiary methyl singlets at 0.97, 0.97, 1.25 ppm).

The vinylic mercurials 5 and 6 have also been exploited to prepare novel iodo derivatives (corresponding to the bromo compounds 7 and 8) by simple treatment with ICl in pyridine at ambient temp.: $5 \rightarrow 9$ (m.p. 55° ; 96%) and $6 \rightarrow 10$ (m.p. 129° ; 74%). The PNR spectrum of $\alpha\omega$ -dilodo longifolene 10 ($C_{15}H_{22}I_2$; M^+ 456) was similar to its dibromo analogue 8: allylic methine multiplet at 3.13 ppm and three tertiary methyl singlets at 1.00, 1.00 and 1.27 ppm. Reductive elimination, as in the case of 8, generated longifolene. No. 45

In a comparative study, the camphene-Hg(OAc)₂ reaction product was amenable to direct crystallization (without NaCl treatment) and two pure crystalline compounds were isolated by a combination of crystallisation (CH_2Cl_2 -hexane) and chromatography. The minor compound (22%) and the major compound (29%) were readily characterized as the ω -mercuriacetate <u>11</u> and the $\omega\omega$ -dimercuriacetate <u>12</u>. Furthermore, the ω -mercurichloride <u>13</u> and the

 $\alpha\omega$ -dimercurichloride <u>14</u> were easily generated from <u>11</u> and <u>12</u> respectively by exposure to aqueous NaCl. As in the case of longifolene, Hg-free ω -halogenated derivatives were readily prepared from camphene vinylic mercurials by reaction with Br₂ or ICl in pyridine. Some physical data of the camphene vinylic mercurials/ ω -halo derivatives are given in Table I.

Compd.	m.p./ b.p.(bath)	PMR values ⁺ (ppm)			
		vinylic H	allylic H	OAc	tertiary Me
11	77 ⁰	5.27(s)	2.70(m)	1.93(s)	1.10(s), 1.10(s)
<u>13</u>	103 ⁰	5.35(s)	2.67(m)	-	1.08(s), 1.08(s)
15	90 ⁰ /0.7 mm	5.57(s)	3.13(m)	-	1.10(s), 1.10(s)
<u>16</u>	105 ⁰ /1 mm	5,52(s)	3.03(m)	-	1.08(s), 1.08(s)
<u>12</u>	196 ⁰	-	2.70(m)	2.08(s), 2.08(s)	1.30(s), 1.25(s)
14	270 ⁰ d		2.63(m)	-	1.27(s), 1.22(s)
14 17 ⁸ 18 ⁸	130 ⁰ /0.5 mm	-	3.13(m)	-	1.30(s), 1.25(s)
18 ⁸	150 ⁰ /0.3 mm	•	3.13(m)	-	1.35(s), 1.28(s)

TA	BL	E	I
	_	~	

⁺in CCl₄ except for <u>12</u> (CDCl₃) and <u>14</u> (pyridine)

Two other points of interest may be mentioned: (i) further reaction of $Hg(OAc)_2$ in AcOH (room temp./3 days; NaCl work-up) converted the vinylic monomercurials into the dimercurials $-5 \rightarrow 6$ (67%); <u>13</u> \rightarrow <u>14</u> (83%) and (ii) the vinylic mercurials from longifolene (5 and 6) and from camphene (<u>13</u> and <u>14</u>) underwent smooth reductive elimination on reaction with LiAlH₄ to furnish the parent olefins.

REFERENCES AND NOTES

- 1 Communication No. 2295, National Chemical Laboratory, Poona. Newer Aspects of Longifolene - X. Part IX: P.K. Jadhav and U.R. Nayak, Indian J. Chem. (communicated).
- a) S.N. Suryawanshi and U.R. Nayak, <u>Tetrahedron Letters</u>, 2619 (1977).
 b) S.N. Suryawanshi and U.R. Nayak, <u>Tetrahedron Letters</u>, 465 (1978).
- 3 S.N. Suryawanshi, P.K. Jadhav and U.R. Nayak, Indian J.Chem. (in Press).
- 4 J.M. Coxon, M.P. Hartshorn and A.J. Lewis, <u>Tetrahedron</u> 26, 3755 (1970).
- 5 H.C. Brown and P.J. Geoghegan Jr., <u>J. Org. Chem.</u>, <u>35</u>, 1844 (1970).

In the case of camphene 1, $Hg(OAc)_{2}/aq$. THF reaction (room temp./5 hr) followed by in situ NaBH₄ reduction, readily furnished the expected tertiary alcohol (26%); under the same reaction conditions longifolene failed to undergo any hydration and the isolated product consisted of only longifolene.

- 6 C.P. Casey, G.M. Whitesides and J. Kurth, <u>J. Org. Chem.</u> <u>38</u>, 3406 (1973).
- 7 W.R. Dolbier Jr., D. Lomas and P. Tarrant, <u>J. Am. Chem. Soc. 90</u>, 3594 (1968).
- 8 Reductive elimination (Na/THF/t-BuOH) generated camphene.

(Received in UK 18 July 1978)